Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Infect Public Health ; 16(3): 384-392, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2180687

ABSTRACT

Age represents the major risk factor for fatal disease outcome in coronavirus disease (COVID-19) due to age-related changes in immune responses. On the one hand lymphocyte counts continuously decline with advancing age, on the other hand somatic hyper-mutations of B-lymphocytes and levels of class-switched antibodies diminish, resulting in lower neutralizing antibody titers. To date the impact of age on immunoglobulin G (IgG) production in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is unknown. Therefore, we investigated the impact of age on the onset of IgG production and its association with outcome, viral persistence, inflammatory and thrombotic markers in consecutive, hospitalized COVID-19 patients admitted to the Clinic Favoriten (Vienna, Austria) between April and October 2020 that fulfilled predefined inclusion criteria. Three different IgGs against SARS-CoV-2 (spike protein S1, nucleocapsid (NC), and the spike protein receptor binding domain (RBD)) were monitored in plasma of 97 patients upon admission and three times within the first week followed by weekly assessment during their entire hospital stay. We analyzed the association of clinical parameters including C-reactive protein (CRP), D-dimer levels and platelet count as well as viral persistence with the onset and concentration of different anti-SARS-CoV-2 specific IgGs. Our data demonstrate that in older individuals anti-SARS-CoV-2 IgG production increases earlier after symptom onset and that deceased patients have the highest amount of antibodies against SARS-CoV-2 whereas intensive care unit (ICU) survivors have the lowest titers. In addition, anti-SARS-CoV-2 IgG concentrations are not associated with curtailed viral infectivity, inflammatory or thrombotic markers, suggesting that not only serological memory but also other adaptive immune responses are involved in successful viral killing and protection against a severe COVID-19 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Aged , Immunoglobulin G , Spike Glycoprotein, Coronavirus , Inflammation , Antibodies, Viral
2.
Wien Klin Wochenschr ; 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2085388

ABSTRACT

BACKGROUND: Remdesivir is the only antiviral agent approved for the treatment of hospitalized coronavirus disease 2019 (COVID-19) patients requiring supplemental oxygen. Studies show conflicting results regarding its effect on mortality. METHODS: In this single center observational study, we included adult hospitalized COVID-19 patients. Patients who were treated with remdesivir were compared to controls. Remdesivir was administered for 5 days. To adjust for any imbalances in our cohort, a propensity score matched analysis was performed. The aim of our study was to analyze the effect of remdesivir on in-hospital mortality and length of stay (LOS). RESULTS: After propensity score matching, 350 patients (175 remdesivir, 175 controls) were included in our analysis. Overall, in-hospital mortality was not significantly different between groups remdesivir 5.7% [10/175] vs. control 8.6% [15/175], hazard ratio 0.50, 95% confidence interval (CI) 0.22-1.12, p = 0.091. Subgroup analysis showed a significant reduction of in-hospital mortality in patients who were treated with remdesivir ≤ 7 days of symptom onset remdesivir 4.2% [5/121] vs. control 10.4% [13/125], hazard ratio 0.26, 95% CI 0.09 to 0.75, p = 0.012 and in female patients remdesivir 2.9% [2/69] vs. control 12.2% [9/74], hazard ratio 0.18 95%CI 0.04 to 0.85, p = 0.03. Patients in the remdesivir group had a significantly longer LOS (11 days vs. 9 days, p = 0.046). CONCLUSION: Remdesivir did not reduce in-hospital mortality in our whole propensity score matched cohort, but subgroup analysis showed a significant mortality reduction in female patients and in patients treated within ≤ 7 days of symptom onset. Remdesivir may reduce mortality in patients who are treated in the early stages of illness.

3.
Infection ; 2022 Sep 09.
Article in English | MEDLINE | ID: covidwho-2014588

ABSTRACT

BACKGROUND: Tocilizumab and baricitinib are recommended treatment options for hospitalized COVID-19 patients requiring oxygen support. Literature about its efficacy and safety in a head-to-head comparison is scarce. METHODS: Hospitalized COVID-19 patients requiring oxygen were treated with tocilizumab or baricitinib additionally to dexamethasone. Tocilizumab was available from February till the 19th of September 2021 and baricitinib from 21st of September. The primary outcome was in-hospital mortality. Secondary outcome parameters were progression to mechanical ventilation (MV), length-of-stay (LOS) and potential side effects. RESULTS: 159 patients (tocilizumab 68, baricitinib 91) with a mean age of 60.5 years, 64% male were included in the study. Tocilizumab patients were admitted 1 day earlier, were in a higher WHO category at the time of inclusion and had a higher CRP level on admission and treatment initiation. Patients receiving Tocilizumab were treated with remdesivir more often and only patients in the baricitinib group were treated with monoclonal antibodies. Other characteristics did not differ significantly. In-hospital mortality (18% vs. 11%, p = 0.229), progression to MV (19% vs. 11%, p = 0.173) and LOS (13 vs. 12 days, p = 0.114) did not differ between groups. Side effects were equally distributed between groups, except ALAT elevation which was significantly more often observed in the tocilizumab group (43% vs. 25%, p = 0.021). CONCLUSIONS: In-hospital mortality, progression to MV and LOS were not significantly different in patients treated with tocilizumab or baricitinib additionally to standard of care. Both drugs seem equally effective but further head-to-head trials are needed.

4.
Wien Klin Wochenschr ; 2022 Sep 07.
Article in English | MEDLINE | ID: covidwho-2007148

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has undergone different molecular changes, sprouting genetic variants of the original wildtype. Clinical comparisons between patients infected with alpha versus delta are scarce. METHODS: In this retrospective observational study, adult patients hospitalized with coronavirus disease 2019 (COVID-19) due to confirmed SARS-CoV­2 alpha or delta infection were included. Patient characteristics, virologic and laboratory parameters, as well as the clinical course were compared in patients infected with alpha vs. delta variants. RESULTS: A total of 106 patients infected with alpha and 215 patients infected with delta were included. Patients infected with the delta variant were admitted to hospital earlier after symptom onset (6 vs. 7 days, p < 0.001). Blood levels of C­reactive protein (43.3 vs. 62.9 mg/l, p = 0.02) and neutrophil count (3.81 vs. 4.53 G/l, p = 0.06) were lower in delta patients. Furthermore, at hospital admission cycle threshold (CT) values were significantly lower in patients infected with the delta variant (22.3 vs. 24.9, p < 0.001). Patients infected with the delta variant needed supplemental oxygen less often during disease course (50% vs. 64%, p = 0.02). Furthermore, there was a statistically non-significant trend towards a lower ICU admission rate among delta patients (16% vs. 24%, p = 0.08) CONCLUSION: Patients diagnosed with the delta variant were admitted to the hospital earlier, had a less severe course of disease and a higher viral replication on admission. This may provide a window of opportunity for antivirals in the hospital setting.

5.
Viruses ; 14(6)2022 06 13.
Article in English | MEDLINE | ID: covidwho-1911628

ABSTRACT

BACKGROUND: This study assessed the predictive performance of inflammatory, hepatic, coagulation, and cardiac biomarkers in patients with prediabetes and diabetes mellitus hospitalized for COVID-19 in Austria. METHODS: This was an analysis of a multicenter cohort study of 747 patients with diabetes mellitus or prediabetes hospitalized for COVID-19 in 11 hospitals in Austria. The primary outcome of this study was in-hospital mortality. The predictor variables included demographic characteristics, clinical parameters, comorbidities, use of medication, disease severity, and laboratory measurements of biomarkers. The association between biomarkers and in-hospital mortality was assessed using simple and multiple logistic regression analyses. The predictive performance of biomarkers was assessed using discrimination and calibration. RESULTS: In our analysis, 70.8% had type 2 diabetes mellitus, 5.8% had type 1 diabetes mellitus, 14.9% had prediabetes, and 8.6% had other types of diabetes mellitus. The mean age was 70.3 ± 13.3 years, and 69.3% of patients were men. A total of 19.0% of patients died in the hospital. In multiple logistic regression analysis, LDH, CRP, IL-6, PCT, AST-ALT ratio, NT-proBNP, and Troponin T were significantly associated with in-hospital mortality. The discrimination of NT-proBNP was 74%, and that of Troponin T was 81%. The calibration of NT-proBNP was adequate (p = 0.302), while it was inadequate for Troponin T (p = 0.010). CONCLUSION: Troponin T showed excellent predictive performance, while NT-proBNP showed good predictive performance for assessing in-hospital mortality in patients with diabetes mellitus hospitalized with COVID-19. Therefore, these cardiac biomarkers may be used for prognostication of COVID-19 patients.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Prediabetic State , Aged , Aged, 80 and over , Austria/epidemiology , Biomarkers , Cohort Studies , Female , Hospital Mortality , Humans , Male , Middle Aged , Registries , Risk Factors , Troponin T
6.
Microbiol Spectr ; 10(3): e0014022, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1891745

ABSTRACT

A high rate of bacterial and fungal superinfections was reported in critically ill patients with COVID-19. However, diagnosis can be challenging. The aim of this study is to evaluate the sensitivity and the clinical utility of the point-of-care method T2 magnetic resonance (T2MR) with the gold standard: the blood culture. T2MR can potentially detect five different Candida species and six common bacteria (so-called "ESKAPE" pathogens including Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Acinet`obacter baumanii, Pseudomonas aeruginosa, and Enterococcus faecium). If superinfection was suspected in patients with COVID-19 admitted to the intensive care unit, blood culture and two panels of T2MR were performed. Eighty-five diagnostic bundles were performed in 60 patients in total. T2MR detected an ESKAPE pathogen in 9 out of 85 (10.6%) samples, compared to BC in 3 out of 85 (3.5%). A Candida species was detected in 7 of 85 (8.2%) samples of T2MR compared to 1 out of 85(1.2%) in blood culture. The mean time to positive test result in samples with concordant positive results was 4.5 h with T2MR and 52.5 h with blood culture. The additional use of T2MR enables a highly sensitive and rapid detection of ESKAPE and Candida pathogens. IMPORTANCE Coronavirus disease 2019 (COVID-19) has led to a high number of deaths since the beginning of the pandemic worldwide. One of the reasons is the high number of bacterial and fungal superinfections in patients suffering from critical disease. However, diagnosis is often challenging. In this study we could show that the additional use of the culture-independent method T2MR did not only show a much higher detection rate of bacterial and fungal pathogens but also a significantly shorter time until detection and therapy change compared to the gold standard: the blood culture. The implementation of T2MRin the care of patients with severe course of COVID-19 might lead to an earlier sufficient antimicrobial therapy and as a result lower mortality and less use of broad-spectrum unnecessary therapy reducing the risk of resistance development.


Subject(s)
COVID-19 , Candidemia , Enterococcus faecium , Superinfection , Anti-Bacterial Agents/therapeutic use , Blood Culture , COVID-19/diagnosis , Candida , Candidemia/diagnosis , Candidemia/drug therapy , Candidemia/microbiology , Escherichia coli , Humans , Magnetic Resonance Spectroscopy/methods , Superinfection/drug therapy
7.
Front Cardiovasc Med ; 8: 779073, 2021.
Article in English | MEDLINE | ID: covidwho-1809356

ABSTRACT

Background: The fatal consequences of an infection with severe acute respiratory syndrome coronavirus 2 are not only caused by severe pneumonia, but also by thrombosis. Platelets are important regulators of thrombosis, but their involvement in the pathogenesis of COVID-19 is largely unknown. The aim of this study was to determine their functional and biochemical profile in patients with COVID-19 in dependence of mortality within 5-days after hospitalization. Methods: The COVID-19-related platelet phenotype was examined by analyzing their basal activation state via integrin αIIbß3 activation using flow cytometry and the proteome by unbiased two-dimensional differential in-gel fluorescence electrophoresis. In total we monitored 98 surviving and 12 non-surviving COVID-19 patients over 5 days of hospital stay and compared them to healthy controls (n = 12). Results: Over the observation period the level of basal αIIbß3 activation on platelets from non-surviving COVID-19 patients decreased compared to survivors. In line with this finding, proteomic analysis revealed a decrease in the total amount of integrin αIIb (ITGA2B), a subunit of αIIbß3, in COVID-19 patients compared to healthy controls; the decline was even more pronounced for the non-survivors. Consumption of the fibrin-stabilizing factor coagulation factor XIIIA (F13A1) was higher in platelets from COVID-19 patients and tended to be higher in non-survivors; plasma concentrations of the latter also differed significantly. Depending on COVID-19 disease status and mortality, increased amounts of annexin A5 (ANXA5), eukaryotic initiation factor 4A-I (EIF4A1), and transaldolase (TALDO1) were found in the platelet proteome and also correlated with the nasopharyngeal viral load. Dysregulation of these proteins may play a role for virus replication. ANXA5 has also been identified as an autoantigen of the antiphospholipid syndrome, which is common in COVID-19 patients. Finally, the levels of two different protein disulfide isomerases, P4HB and PDIA6, which support thrombosis, were increased in the platelets of COVID-19 patients. Conclusion: Platelets from COVID-19 patients showed significant changes in the activation phenotype, in the processing of the final coagulation factor F13A1 and the phospholipid-binding protein ANXA5 compared to healthy subjects. Additionally, these results demonstrate specific alterations in platelets during COVID-19, which are significantly linked to fatal outcome.

8.
Wien Klin Wochenschr ; 133(23-24): 1310-1317, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1756806

ABSTRACT

BACKGROUND: Diagnosis and treatment of influenza patients are often provided across several medical specialties. We compared patient outcomes at an infectious diseases (ID), a rheumatology (Rheu) and a pulmonology (Pul) department. MATERIAL AND METHODS: In this prospective observational multicenter study we included all influenza positive adults who were hospitalized and treated at flu isolation wards in three hospitals in Vienna during the season 2018/2019. RESULTS: A total of 490 patients (49% female) with a median age of 73 years (interquartile range [IQR] 61-82) were included. No differences regarding age, sex and most underlying diseases were present at admission. Frequencies of the most common complications differed: acute kidney failure (ID 12.7%, Rheu 21.2%, Pulm 37.1%, p < 0.001), acute heart failure (ID 4.3%, Rheu 17.1%, Pulm 14.4%, p < 0.001) and respiratory insufficiency (ID 45.1%, Rheu 41.5%, Pulm 56.3%, p = 0.030). Oseltamivir prescription was lowest at the pulmonology flu ward (ID 79.6%, Rheu 90.5%, Pulm 61.7%, p < 0.001). In total 176 patients (35.9%) developed pneumonia. Antibiotic selection varied between the departments: amoxicillin/clavulanic acid (ID 28.9%, Rheu 63.8%, Pulm 5.9%, p < 0.001), cefuroxime (ID 28.9%, Rheu 1.3%, Pulm 0%, p < 0.001), 3rd generation cephalosporins (ID 4.4%, Rheu 5%, Pulm 72.5%, p < 0.001), doxycycline (ID 17.8%, Rheu 0%, Pulm 0%, p < 0.001). The median length of stay was significantly different between wards: ID 6 days (IQR 5-8), Rheu 6 days (IQR 5-7) and Pulm 7 days (IQR 5-9.5, p = 0.034). In-hospital mortality was 4.3% and did not differ between specialties. CONCLUSION: We detected differences in oseltamivir usage, length of in-hospital stay and antibiotic choices for pneumonia. Influenza-associated mortality was unaffected by specialty.


Subject(s)
Influenza, Human , Adult , Aged , Anti-Bacterial Agents/therapeutic use , Female , Hospitalization , Humans , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Male , Oseltamivir , Seasons
9.
J Gen Intern Med ; 37(6): 1494-1500, 2022 05.
Article in English | MEDLINE | ID: covidwho-1750819

ABSTRACT

BACKGROUND: Point-of-care antigen tests (AgTs) for the detection of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) enable the rapid testing of infected individuals and are easy-to-use. However, there are few studies evaluating their clinical use. OBJECTIVE: The present study aimed to evaluate and compare the clinical performance characteristics of various commercial SARS-CoV-2 AgTs. DESIGN: The sensitivity of five AgTs, comprising four rapid antigen tests (RAT; AMP Rapid Test SARS-CoV-2 Ag, NADAL COVID-19 Antigen Rapid Test, CLINITEST Rapid COVID-19 Antigen Test, and Roche SARS-CoV-2 Rapid Antigen Test) and one sandwich chemiluminescence immunoassay (CLIA; LIAISON SARS-CoV-2 Assay), were evaluated in 300 nasopharyngeal (NP) swabs. Reverse transcriptase (RT) polymerase chain reaction (PCR) was used as a reference method. PARTICIPANTS: NP swabs were collected from patients admitted to hospital due to COVID-19. KEY RESULTS: Sensitivities of the AgTs ranged from 64.9 to 91.7% for samples with RT-PCR cycle threshold (Ct) values lower than 30 and were 100% for cycle threshold (Ct) values lower than 20. The highest sensitivity was observed for CLINITEST Rapid COVID-19 Antigen Test, and Roche SARS-CoV-2 rapid antigen test. Multivariate analysis using time from symptom onset and the Ct value for AgT sensitivity showed an inverse correlation. Further, the female sex was an independent factor of lower RAT sensitivity. CONCLUSIONS: Antigen tests from NP swab samples show high sensitivity in patients with a Ct value < 20. The best clinical sensitivity can be obtained using AgTs within the first 6 days after symptom onset.


Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral/analysis , COVID-19/diagnosis , Female , Humans , Sensitivity and Specificity
10.
Front Cardiovasc Med ; 8: 802566, 2021.
Article in English | MEDLINE | ID: covidwho-1686459

ABSTRACT

Coronavirus disease 2019 (COVID-19) induces a hypercoagulatory state that frequently leads to thromboembolic complications. Whereas anticoagulation is associated with reduced mortality, the role of antiplatelet therapy in COVID-19 is less clear. We retrospectively analyzed the effect of anticoagulation and antiplatelet therapy in 578 hospitalized patients with COVID-19 and prospectively monitored 110 patients for circulating microthrombi and plasma markers of coagulation in the first week of admission. Moreover, we determined platelet shape change and also thrombi in postmortem lung biopsies in a subset of patients with COVID-19. We observed no association of antiplatelet therapy with COVID-19 survival. Adverse outcome in COVID-19 was associated with increased activation of the coagulation cascade, whereas circulating microthrombi did not increase in aggravated disease. This was in line with analysis of postmortem lung biopsies of patients with COVID-19, which revealed generally fibrin(ogen)-rich and platelet-low thrombi. Platelet spreading was normal in severe COVID-19 cases; however, plasma from patients with COVID-19 mediated an outcome-dependent inhibitory effect on naïve platelets. Antiplatelet medication disproportionally exacerbated this platelet impairment in plasma of patients with fatal outcome. Taken together, this study shows that unfavorable outcome in COVID-19 is associated with a profound dysregulation of the coagulation system, whereas the contribution of platelets to thrombotic complications is less clear. Adverse outcome may be associated with impaired platelet function or platelet exhaustion. In line, antiplatelet therapy was not associated with beneficial outcome.

11.
Front Cell Infect Microbiol ; 11: 795026, 2021.
Article in English | MEDLINE | ID: covidwho-1686455

ABSTRACT

Objective: To develop and validate a prognostic model for in-hospital mortality after four days based on age, fever at admission and five haematological parameters routinely measured in hospitalized Covid-19 patients during the first four days after admission. Methods: Haematological parameters measured during the first 4 days after admission were subjected to a linear mixed model to obtain patient-specific intercepts and slopes for each parameter. A prediction model was built using logistic regression with variable selection and shrinkage factor estimation supported by bootstrapping. Model development was based on 481 survivors and 97 non-survivors, hospitalized before the occurrence of mutations. Internal validation was done by 10-fold cross-validation. The model was temporally-externally validated in 299 survivors and 42 non-survivors hospitalized when the Alpha variant (B.1.1.7) was prevalent. Results: The final model included age, fever on admission as well as the slope or intercept of lactate dehydrogenase, platelet count, C-reactive protein, and creatinine. Tenfold cross validation resulted in a mean area under the receiver operating characteristic curve (AUROC) of 0.92, a mean calibration slope of 1.0023 and a Brier score of 0.076. At temporal-external validation, application of the previously developed model showed an AUROC of 0.88, a calibration slope of 0.95 and a Brier score of 0.073. Regarding the relative importance of the variables, the (apparent) variation in mortality explained by the six variables deduced from the haematological parameters measured during the first four days is higher (explained variation 0.295) than that of age (0.210). Conclusions: The presented model requires only variables routinely acquired in hospitals, which allows immediate and wide-spread use as a decision support for earlier discharge of low-risk patients to reduce the burden on the health care system. Clinical Trial Registration: Austrian Coronavirus Adaptive Clinical Trial (ACOVACT); ClinicalTrials.gov, identifier NCT04351724.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospital Mortality , Hospitalization , Humans , Retrospective Studies
12.
Cells ; 10(12)2021 11 30.
Article in English | MEDLINE | ID: covidwho-1613627

ABSTRACT

The COVID-19 pandemic drastically highlighted the vulnerability of the elderly population towards viral and other infectious threats, illustrating that aging is accompanied by dysregulated immune responses currently summarized in terms like inflammaging and immunoparalysis. To gain a better understanding on the underlying mechanisms of the age-associated risk of adverse outcome in individuals experiencing a SARS-CoV-2 infection, we analyzed the impact of age on circulating monocyte phenotypes, activation markers and inflammatory cytokines including interleukin 6 (IL-6), IL-8 and tumor necrosis factor (TNF) in the context of COVID-19 disease progression and outcome in 110 patients. Our data indicate no age-associated differences in peripheral monocyte counts or subset composition. However, age and outcome are associated with differences in monocyte activation status. Moreover, a distinct cytokine pattern of IL-6, IL-8 and TNF in elderly survivors versus non-survivors, which consolidates over the time of hospitalization, suggests that older patients with adverse outcomes experience an inappropriate immune response, reminiscent of an inflammaging driven immunoparalysis. Our study underscores the value, necessity and importance of longitudinal monitoring in elderly COVID-19 patients, as dynamic changes after symptom onset can be observed, which allow for a differentiated insight into confounding factors that impact the complex pathogenesis following an infection with SARS-CoV-2.


Subject(s)
Aging/pathology , COVID-19/blood , COVID-19/pathology , Cytokines/blood , Monocytes/pathology , Acute Disease , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Biomarkers/metabolism , Humans , Longitudinal Studies , Middle Aged , Neutrophils/metabolism , Prospective Studies , SARS-CoV-2 , Young Adult
13.
Eur J Neurol ; 28(10): 3411-3417, 2021 10.
Article in English | MEDLINE | ID: covidwho-1607226

ABSTRACT

BACKGROUND AND PURPOSE: Since the outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, several reports indicated neurological involvement in COVID-19 disease. Muscle involvement has also been reported as evidenced by creatine kinase (CK) elevations and reports of myalgia. METHODS: Creatine kinase, markers of inflammation, pre-existing diseases and statin use were extracted from records of Austrian hospitalised COVID-19 patients. Disease severity was classified as severe in case of intensive care unit (ICU) admission or mortality. COVID-19 patients were additionally compared to an historical group of hospitalised influenza patients. RESULTS: Three hundred fifty-one patients with SARS-CoV-2 and 258 with influenza were included in the final analysis. CK was elevated in 27% of COVID-19 and in 28% of influenza patients. CK was higher in severe COVID-19 as were markers of inflammation. CK correlated significantly with inflammation markers, which had an independent impact on CK when adjusted for demographic variables and disease severity. Compared to influenza patients, COVID-19 patients were older, more frequently male, had more comorbidities, and more frequently had a severe disease course. Nevertheless, influenza patients had higher baseline CK than COVID-19, and 35.7% of intensive care unit (ICU)-admitted patients had CK levels >1,000 U/L compared to only 4.7% of ICU-admitted COVID-19 patients. CONCLUSIONS: HyperCKemia occurs in a similar frequency in COVID-19 and influenza infection. CK levels were lower in COVID-19 than in influenza in mild and severe disease. CK levels strongly correlate with disease severity and markers of inflammation. To date, it remains unclear whether hyperCKemia is due to a virus-triggered inflammatory response or direct muscle toxicity.


Subject(s)
COVID-19 , Influenza, Human , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , Male , Muscles , Pandemics , SARS-CoV-2
14.
Front Cardiovasc Med ; 8: 795624, 2021.
Article in English | MEDLINE | ID: covidwho-1597865

ABSTRACT

Thromboembolic complications are frequently observed in Coronavirus disease 2019 (COVID-19). While COVID-19 is linked to platelet dysregulation, the association between disease outcome and platelet function is less clear. We prospectively monitored platelet activation and reactivity in 97 patients during the first week of hospitalization and determined plasma markers of platelet degranulation and inflammation. Adverse outcome in COVID-19 was associated with increased basal platelet activation and diminished platelet responses, which aggravated over time. Especially GPIIb/IIIa responses were abrogated, pointing toward impeded platelet aggregation. Moreover, platelet-leukocyte aggregate formation was diminished, pointing toward abrogated platelet-mediated immune responses in COVID-19. No general increase in plasma levels of platelet-derived granule components could be detected, arguing against platelet exhaustion. However, studies on platelets from healthy donors showed that plasma components in COVID-19 patients with unfavorable outcome were at least partly responsible for diminished platelet responses. Taken together this study shows that unfavorable outcome in COVID-19 is associated with a hypo-responsive platelet phenotype that aggravates with disease progression and may impact platelet-mediated immunoregulation.

15.
Cardiovasc Res ; 117(14): 2807-2820, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1596913

ABSTRACT

AIMS: Anticoagulation was associated with improved survival of hospitalized coronavirus disease 2019 (COVID-19) patients in large-scale studies. Yet, the development of COVID-19-associated coagulopathy (CAC) and the mechanism responsible for improved survival of anticoagulated patients with COVID-19 remain largely elusive. This investigation aimed to explore the effects of anticoagulation and low-molecular-weight heparin (LMWH) in particular on patient outcome, CAC development, thromboinflammation, cell death, and viral persistence. METHODS AND RESULTS: Data of 586 hospitalized COVID-19 patients from three different regions of Austria were evaluated retrospectively. Of these, 419 (71.5%) patients received LMWH and 62 (10.5%) received non-vitamin-K oral anticoagulants (NOACs) during hospitalization. Plasma was collected at different time points in a subset of 106 patients in order to evaluate markers of thromboinflammation (H3Cit-DNA) and the cell death marker cell-free DNA (cfDNA). Use of LMWH was associated with improved survival upon multivariable Cox regression (hazard ratio = 0.561, 95% confidence interval: 0.348-0.906). Interestingly, neither LMWH nor NOAC was associated with attenuation of D-dimer increase over time, or thromboinflammation. In contrast, anticoagulation was associated with a decrease in cfDNA during hospitalization, and curtailed viral persistence was observed in patients using LMWH leading to a 4-day reduction of virus positivity upon quantitative polymerase chain reaction [13 (interquartile range: 6-24) vs. 9 (interquartile range: 5-16) days, P = 0.009]. CONCLUSION: Time courses of haemostatic and thromboinflammatory biomarkers were similar in patients with and without LMWH, indicating either no effects of LMWH on haemostasis or that LMWH reduced hypercoagulability to levels of patients without LMWH. Nonetheless, anticoagulation with LMWH was associated with reduced mortality, improved markers of cell death, and curtailed viral persistence, indicating potential beneficial effects of LMWH beyond haemostasis, which encourages use of LMWH in COVID-19 patients without contraindications.


Subject(s)
Anticoagulants/therapeutic use , COVID-19 Drug Treatment , Heparin, Low-Molecular-Weight/therapeutic use , Thromboinflammation/virology , Aged , Anticoagulants/pharmacology , Austria/epidemiology , Biomarkers/blood , COVID-19/blood , COVID-19/complications , COVID-19/mortality , Female , Hemostasis , Heparin, Low-Molecular-Weight/pharmacology , Humans , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies , SARS-CoV-2/drug effects , Thromboinflammation/prevention & control
16.
Viruses ; 13(12)2021 11 30.
Article in English | MEDLINE | ID: covidwho-1591432

ABSTRACT

BACKGROUND: It is a matter of debate whether diabetes alone or its associated comorbidities are responsible for severe COVID-19 outcomes. This study assessed the impact of diabetes on intensive care unit (ICU) admission and in-hospital mortality in hospitalized COVID-19 patients. METHODS: A retrospective analysis was performed on a countrywide cohort of 40,632 COVID-19 patients hospitalized between March 2020 and March 2021. Data were provided by the Austrian data platform. The association of diabetes with outcomes was assessed using unmatched and propensity-score matched (PSM) logistic regression. RESULTS: 12.2% of patients had diabetes, 14.5% were admitted to the ICU, and 16.2% died in the hospital. Unmatched logistic regression analysis showed a significant association of diabetes (odds ratio [OR]: 1.24, 95% confidence interval [CI]: 1.15-1.34, p < 0.001) with in-hospital mortality, whereas PSM analysis showed no significant association of diabetes with in-hospital mortality (OR: 1.08, 95%CI: 0.97-1.19, p = 0.146). Diabetes was associated with higher odds of ICU admissions in both unmatched (OR: 1.36, 95%CI: 1.25-1.47, p < 0.001) and PSM analysis (OR: 1.15, 95%CI: 1.04-1.28, p = 0.009). CONCLUSIONS: People with diabetes were more likely to be admitted to ICU compared to those without diabetes. However, advanced age and comorbidities rather than diabetes itself were associated with increased in-hospital mortality in COVID-19 patients.


Subject(s)
COVID-19/mortality , Comorbidity , Diabetes Mellitus/epidemiology , Hospital Mortality , Public Health , Adult , Aged , Aged, 80 and over , Austria/epidemiology , Cohort Studies , Female , Hospitalization , Humans , Intensive Care Units , Male , Middle Aged , Odds Ratio , Propensity Score , Retrospective Studies , Risk Factors , SARS-CoV-2 , Young Adult
17.
Wien Klin Wochenschr ; 134(9-10): 385-390, 2022 May.
Article in English | MEDLINE | ID: covidwho-1561051

ABSTRACT

BACKGROUND: Critically ill Coronavirus disease 2019 (COVID-19) patients have high rates of bacterial superinfection. Multiplex polymerase chain reaction panels may be able to provide useful information about the incidence and spectrum of bacteria causing superinfections. METHODS: In this retrospective observational study we included all COVID-19 positive patients admitted to our intensive care unit with suspected hospital-acquired pneumonia/ventilator-associated pneumonia (HAP/VAP) in whom the BioFire® Pneumonia Panel (PP) was performed from tracheal aspirate or bronchoalveolar lavage fluid for diagnostic purposes. The aim of our study was to analyze the spectrum of pathogens detected with the PP. RESULTS: In this study 60 patients with a median age of 62.5 years were included. Suspected VAP was the most frequent (48/60, 80%) indication for performing the PP. Tracheal aspirate was the predominant sample type (50/60, 83.3%). The PP led to a negative, monomicrobial and polymicrobial result in 36.7%, 35% and 28.3% of the patients, respectively. The three most detected bacteria were Staphylococcus aureus (13/60, 21.7%), Klebsiella pneumoniae (12/60, 20%) and Haemophilus influenzae (9/60, 15%). Neither atypical bacteria nor resistance genes were detected. Microbiological culture of respiratory specimens was performed in 36 (60%) patients concomitantly. The PP and microbiological culture yielded a non-concordant, partial concordant and completely concordant result in 13.9% (5/36), 30.6% (11/36) and 55.6% (20/36) of the analyzed samples, respectively. CONCLUSION: In critically ill COVID-19 patients with suspected HAP/VAP results of the PP and microbiological culture methods were largely consistent. In our cohort, S. aureus and K. pneumoniae were the most frequently detected organisms. A higher diagnostic yield may be achieved if both methods are combined.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Anti-Bacterial Agents/therapeutic use , Bacteria/genetics , COVID-19/diagnosis , COVID-19/epidemiology , Critical Illness/epidemiology , Humans , Intensive Care Units , Middle Aged , Multiplex Polymerase Chain Reaction/methods , Pneumonia, Ventilator-Associated/epidemiology , Staphylococcus aureus/genetics
19.
Front Pharmacol ; 12: 704767, 2021.
Article in English | MEDLINE | ID: covidwho-1317240

ABSTRACT

Background: Despite lopinavir/ritonavir (LPV/RTV) demonstrating in-vitro activity against SARS-CoV-2, large trials failed to show any net clinical benefit. Since SARS-CoV-2 has an EC50 of 16.4 µg/ml for LPV this could be due to inadequate dosing. Methods: COVID-19 positive patients admitted to the hospital who received high dose LPV/RTV were included. High dose (HD) LPV/RTV 200/50 mg was defined as four tablets bid as loading dose, then three tablets bid for up to 10 days. Trough plasma concentrations were measured after the loading dose and on day 5-7 in steady state (SS). Post loading dose (PLD) and SS plasma trough levels were compared with SS trough levels from COVID-19 patients who received normal dose (ND) LPV/RTV (2 tablets bid) at the beginning of the pandemic. Results: Fifty patients (30% female) with a median age of 59 years (interquartile range 49-70.25) received HD LPV/RTV. Median HD-PLD concentration was 24.9 µg/ml (IQR 15.8-30.3) and significantly higher than HD-SS (12.9 µg/ml, IQR 7.2-19.5, p < 0.001) and ND-SS (13.6 µg/ml, IQR 10.1-22.2, p = 0.013). HD-SS and ND-SS plasma levels did not differ significantly (p = 0.507). C-reactive-protein showed a positive correlation with HD-SS (Spearman correlation-coefficient rS = 0.42, p = 0.014) and ND-SS (rS = 0.81, p = 0.015) but not with HD-PLD (rS = 0.123, p = 0.43). Conclusion: HD-PLD plasma trough concentration was significantly higher than HD-SS and ND-SS concentration, but no difference was detected between HD-SS and ND-SS trough levels. Due to the high EC50 of SARS-CoV-2 and the fact that LPV/RTV is highly protein bound, it seems unlikely that LPV/RTV exhibits a relevant antiviral effect against SARS-CoV-2 in vivo.

20.
Infect Dis (Lond) ; 53(11): 820-829, 2021 11.
Article in English | MEDLINE | ID: covidwho-1269478

ABSTRACT

BACKGROUND: Convalescent plasma (CP) containing antibodies derived from coronavirus disease 2019 (COVID-19) survivors has been proposed as a promising therapeutic option for severe COVID-19. METHODS: In our intensive care unit (ICU), 55 patients (46 male, median age 61 years) with PCR-confirmed COVID-19 (35 = 63.6% on mechanical ventilation, 7 = 14.5% on high-flow nasal oxygen, 12 = 20% on non-invasive ventilation, 1 = 1.8% without respiratory support) were treated with high-titre CP (200 mL per dose, range 1-6 doses, median 3 doses per patient, minimum titre > 1:100, Wantai test). 139 COVID-19 patients treated in the same ICU who did not receive CP served as control group. In 27 patients, the effect of CP on the individual levels of SARS-CoV-2 IgG antibodies was assessed by ELISA in serum sample pairs collected before and after CP transfusion. RESULTS: The first CP dose was administered at a median of 8 days after symptom onset. 13 patients in the plasma cohort died (28-day mortality 24.1%), compared to 42 (30.2%) in the cohort who did not receive CP (p = 0.5, Pearson Chi-squared test). Out of the 27 individuals investigated for the presence of IgG antibodies, 8 did not have detectable IgG levels before the first CP transfusion. In this subpopulation, 3 patients (37.5%) died. Not a single confirmed adverse reaction to CP was noted. CONCLUSIONS: While adjunctive treatment with CP for severe and life-threatening COVID-19 was a very safe intervention, we did not observe any effect on mortality.


Subject(s)
COVID-19 , Critical Illness , COVID-19/therapy , Cohort Studies , Humans , Immunization, Passive , Male , Middle Aged , SARS-CoV-2 , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL